
Graphs – Depth First Search

ORD

DFW

SFO

LAX

Graph Search Algorithms

Outline

 DFS Algorithm

 DFS Example

 DFS Applications

Outline

 DFS Algorithm

 DFS Example

 DFS Applications

Depth First Search (DFS)

 Idea:

 Continue searching “deeper” into the graph, until we get
stuck.

 If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

 Analogous to Euler tour for trees

 Used to help solve many graph problems, including

 Nodes that are reachable from a specific node v

 Detection of cycles

 Extraction of strongly connected components

 Topological sorts

Depth-First Search

 The DFS algorithm is
similar to a classic
strategy for exploring a
maze

We mark each
intersection, corner and
dead end (vertex) visited

We mark each corridor
(edge) traversed

We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

Depth-First Search

 Explore every edge, starting from different vertices if necessary.

 As soon as vertex discovered, explore from it.

 Keep track of progress by colouring vertices:

 Black: undiscovered vertices

 Red: discovered, but not finished (still exploring from it)

 Gray: finished (found everything reachable from it).

Graph (,) (directed or In undirectep :)t du G V E

DFS Example on Undirected Graph

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A finished

A unexplored

unexplored edge

A being explored

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

DFS Algorithm Pattern

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u ÎV [G]

color[u] = BLACK //initialize vertex

for each vertex u ÎV [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] ¬ RED

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] ¬ GRAY

Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u

DB

A

C

E

DFS Algorithm Pattern

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u ÎV [G]

color[u] = BLACK //initialize vertex

for each vertex u ÎV [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work

= q(V)

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] ¬ RED

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] ¬ GRAY

total work

= |Adj[v]|
v ÎV

å = q(E)

Thus running time = q(V + E)

(assuming adjacency list structure)

Variants of Depth-First Search

 In addition to, or instead of labeling vertices with colours, they can be

labeled with discovery and finishing times.

 ‘Time’ is an integer that is incremented whenever a vertex changes state

 from unexplored to discovered

 from discovered to finished

 These discovery and finishing times can then be used to solve other

graph problems (e.g., computing strongly-connected components)

Graph (,) (directed or In undirectep :)t du G V E

2 timestamps on each vertex:

 [] discovery time.

 [] finishing tim

Output

.

:

e

d v

f v

1 [] [] 2| |d v f v V

DFS Algorithm with Discovery and Finish Times

DFS(G)

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex u ÎV [G]

color[u] = BLACK //initialize vertex

time ¬ 0

for each vertex u ÎV [G]

if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

colour[u] ¬ RED

time ¬ time +1

d[u] ¬ time

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)

colour [u] ¬ GRAY

time ¬ time +1

f [u] ¬ time

DFS Algorithm with Discovery and Finish Times

Other Variants of Depth-First Search

 The DFS Pattern can also be used to

 Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

 Label edges in the graph according to their role in the search

(see textbook)

Tree edges, traversed to an undiscovered vertex

Forward edges, traversed to a descendent vertex on the current

spanning tree

Back edges, traversed to an ancestor vertex on the current

spanning tree

Cross edges, traversed to a vertex that has already been

discovered, but is not an ancestor or a descendent

Outline

 DFS Algorithm

 DFS Example

 DFS Applications

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Stack

<node,# edges>

/

/

//

/

/

/

/

/

/

/

/

/

/

d f

Note: Stack is Last-In First-Out (LIFO)

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

Found

Not Handled

Stack

<node,# edges>

s,0

/

1/

//

/

/

/

/

/

/

/

/

/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,0

/

1/

/2/

/

/

/

/

/

/

/

/

/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,0/

1/

/2/

3/

/

/

/

/

/

/

/

/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,0

/

1/

/2/

3/

/

/

/

/

/

/

/

4/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,1
k,0

/

1/

/2/

3/

/

/

/

/

/

/

5/

4/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1
h,1

Tree Edge

Path on Stack
/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,1/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,0

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,1

Cross Edge to handled node: d[h]<d[i]

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,2

8/

1/

/2/

3/

/

/

/

/

/

/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3
l,0

8/

1/

/2/

3/

/

/

/

/

/

9/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3
l,1

8/

1/

/2/

3/

/

/

/

/

/

9/

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,3

8/

1/

/2/

3/

/

/

/

/

/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,0

8/

1/

/2/

3/

/

/

11/

/

/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,0

8/

1/

/2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,1

Back Edge to node on Stack:

8/

1/

/2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

m,0

8/

1/

/2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

m,1

8/

1/

/2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1
j,2

8/

1/

/2/

3/

/

/

11/

12/

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

g,1

8/

1/

/2/

3/

/

/

11/

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,4

8/

1/

/2/

3/

/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5
f,0

8/

1/

/2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5
f,1

8/

1/

/2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,2
i,5

8/

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,28/19

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1
c,38/19

1/

/2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Forward Edge

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,1

8/19

1/

/2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

a,2

8/19

1/

/2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,1

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/2/20

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,0
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,1
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,2
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3

e,08/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3

e,18/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

d,3
8/19

1/

/2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,2

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,3

Found

Not Handled

Stack

<node,# edges>

8/19

1/

/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,0

8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,1

8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,2

8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

b,3

8/19

1/

25/2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g

d

s,4

Found

Not Handled

Stack

<node,# edges>

8/19

1/

25/262/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

DFS

s

Found

Not Handled

Stack

<node,# edges>

Finished!

Tree Edges

Back Edges

a

c

h

k

f

i

l

m

j

e

b

g

d

Cross Edges

8/19

1/27

25/262/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Forward Edges

Classification of Edges in DFS

1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if

v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v in

a depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a

descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same

depth-first tree, as long as one vertex is not an ancestor of the other.

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/2

6
2/20

3/19

17/1

8

21/2

4

11/1

6

12/1

5

13/1

4

9/10

5/6

4/7

22/2

3

Classification of Edges in DFS

1. Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.

2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed

and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and

d[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/2

6
2/20

3/19

17/1

8

21/2

4

11/1

6

12/1

5

13/1

4

9/10

5/6

4/7

22/2

3

Classifying edges can help to identify

properties of the graph, e.g., a graph is

acyclic iff DFS yields no back edges.

DFS on Undirected Graphs

 In a depth-first search of an undirected graph, every

edge is either a tree edge or a back edge.

 Why?

DFS on Undirected Graphs

 Suppose that (u,v) is a forward edge or a

cross edge in a DFS of an undirected graph.

 (u,v) is a forward edge or a cross edge when v

is already handled (grey) when accessed from

u.

 This means that all vertices reachable from v

have been explored.

 Since we are currently handling u, u must be red.

 Clearly v is reachable from u.

 Since the graph is undirected, u must also be

reachable from v.

 Thus u must already have been handled: u must

be grey.

 Contradiction!

u

v

Outline

 DFS Algorithm

 DFS Example

 DFS Applications

DFS Application 1: Path Finding

DFS-Path (u,z,stack)

Precondition: u and z are vertices in a graph, stack contains current path

Postcondition: returns true if path from u to z exists, stack contains path

colour[u] ¬ RED

push u onto stack

if u = z

return TRUE

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

if DFS-Path(v,z,stack)

return TRUE

colour [u] ¬ GRAY

pop u from stack

return FALSE

 The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

 We use a stack to keep track of the current path

 If the destination vertex z is encountered, we return the path as the contents of
the stack

DFS Application 2: Cycle Finding

DFS-Cycle (u)

Precondition: u is a vertex in a graph G

Postcondition: returns true if there is a cycle reachable from u.

colour[u] ¬ RED

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = RED //back edge

return true

else if color[v] = BLACK

if DFS-Cycle(v)

return true

colour [u] ¬ GRAY

return false

 The DFS pattern can be used to determine whether a graph is acyclic.

 If a back edge is encountered, we return true.

Why must DFS on a graph with a cycle

generate a back edge?

 Suppose that vertex s is in a connected

component S that contains a cycle C.

 Since all vertices in S are reachable from

s, they will all be visited by a DFS from s.

 Let v be the first vertex in C reached by a

DFS from s.

 There are two vertices u and w adjacent

to v on the cycle C.

 wlog, suppose u is explored first.

 Since w is reachable from u, w will

eventually be discovered.

 When exploring w’s adjacency list, the

back-edge (w, v) will be discovered.

s

v

u w

DFS Application 3. Topological Sorting

(e.g., putting tasks in linear order)

Note: The textbook also describes a breadth-

first TopologicalSort algorithm (Section 13.4.3)

DAGs and Topological Ordering

 A directed acyclic graph (DAG) is a

digraph that has no directed cycles

 A topological ordering of a digraph

is a numbering

v1 , …, vn

of the vertices such that for every

edge (vi , vj), we have i j

 Example: in a task scheduling

digraph, a topological ordering is a

task sequence that satisfies the

precedence constraints

Theorem

A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological

ordering of G

v1

v2

v3

v4 v5

Topological (Linear) Order

underwear

pants

socks

shoes

underwear

pants

socks

shoes

socks

underwear

pants

shoes

Topological (Linear) Order

underwear

pants

socks

shoes

socks

shoes

pants

underwear

Invalid

Order

Note: This algorithm is different than the one

in Goodrich-Tamassia

Algorithm for Topological Sorting

Method TopologicalSort(G)

H G // Temporary copy of G

n G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v n

n n - 1

Remove v from H //as well as edges involving v

Linear Order

a

b h

c i

d j

e k

f l

g

Pre-Condition:

A Directed Acyclic Graph

(DAG)

Post-Condition:

Find one valid linear order

Algorithm:

•Find a terminal node (sink).

•Put it last in sequence.

•Delete from graph & repeat

….. l Can we do better?

Running time: i

i =1

V

å = O V
2()

O(|V|)

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
f

l

….. f

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g
l

l

When node is popped off stack, insert at front of linearly-ordered “to do” list.

….. f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
e
g

l

l,f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
el

g,l,f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

d
l

e,g,l,f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

d,e,g,l,f
Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

il

d,e,g,l,f

j

k

Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

il

k,d,e,g,l,f

j

Linear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

il

j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

bl
c

i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

bl

c,i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

b,c,i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

al
h

b,c,i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

al

h,b,c,i,j,k,d,e,g,l,fLinear Order:

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done!Linear Order:

DFS Algorithm for Topologial Sort

 Makes sense. But how do we prove that it works?

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Because of edge,

v goes on before u comes off

•v comes off before u comes off

•v goes after u in order.

u v
v…u…

Consider each edge

v

…

u

…

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Case 2: v goes on stack first before u.

v comes off before u goes on.

•v goes after u in order.

u v
v…u…

Consider each edge

u

…

v

…

Linear Order Found

Not Handled

Stack
Proof:

•Case 1: u goes on stack first before v.

•Case 2: v goes on stack first before u.

v comes off before u goes on.

Case 3: v goes on stack first before u.

u goes on before v comes off.

•Panic: u goes after v in order.

•Cycle means linear order

is impossible

u v
u…v…

Consider each edge

u

…

v

…

The nodes in the stack form a path starting at s.

Linear Order

a

b h

c i

d j

e k

f

g

Found

Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done!Linear Order:

Analysis: (V+E)

DFS Application 3. Topological Sort

Topological-Sort(G)

Precondition: G is a graph

Postcondition: all vertices in G have been pushed onto

stack in reverse linear order

for each vertex u ÎV [G]

color[u] = BLACK //initialize vertex

for each vertex u ÎV [G]

if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u)

DFS Application 3. Topological Sort

Topological-Sort-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: u and all vertices reachable from u

have been pushed onto stack in reverse linear order

colour[u] ¬ RED

for each v ÎAdj[u] //explore edge (u,v)

if color[v] = BLACK

Topological-Sort-Visit(v)

push u onto stack

colour [u] ¬ GRAY

Outline

 DFS Algorithm

 DFS Example

 DFS Applications

