Graphs — Depth First Search
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Depth First Search (DFS)

> ldea:

O Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

O Analogous to Euler tour for trees

» Used to help solve many graph problems, including
L Nodes that are reachable from a specific node v
O Detection of cycles
O Extraction of strongly connected components
L Topological sorts



Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

J We mark each
Intersection, corner and
dead end (vertex) visited

 We mark each corridor
(edge ) traversed

d We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)




Depth-First Search

Input: Graph 6 =(V ,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
» As soon as vertex discovered, explore from it.
» Keep track of progress by colouring vertices:

O Black: undiscovered vertices

U Red: discovered, but not finished (still exploring from it)

O Gray: finished (found everything reachable from it).



DFS Example on Undirected Graph

|| ove

unexplored
being explored
finished
unexplored edge

discovery edge

back edge




Example (cont.)




DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex ul V[G]
color[u] = BLACK //initialize vertex
for each vertex ul V[G]
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)
\

=



DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] = RED
for each v1 Adij[u] //explore edge (u,v)
If color[v] = BLACK

DES-Visit(v) f\\

colour[u] - GRAY



Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2

The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u



DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex ul V[G] )
color[u] = BLACK //initialize vertex . tofal work
for each vertex ul V[G] ) - qVv)
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)

\
=



DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] = RED
for each v 1 Adj[u] //explore edge (u,v)
If color[v] = BLACK
DFS-Visit(v)
colour[u] - GRAY

>’ro‘ral work
= a | Adjlv]|=g(E)

viv

-

Thus running time = g(V + E) [\\
(assuming adjacency list structure)



Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

U from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph 6 =(V ,E) (directed or undirected)

Output: 2 timestamps on each vertex:
1<d[vl<flv]l<2|V |

d[v]=discovery time.
f[v]=finishing time.



DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex ul V[G]
color[u] = BLACK //initialize vertex
time- 0
for each vertex ul V[G]
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)
\

=



DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] = RED
time -~ time +1
d[u] - time
for each v 1 Adj[u] //explore edge (u,v)
if color[v] = BLACK /'\
DFS-Visit(v)
colour[u]~ GRAY
time - time +1
flu]- time



Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list Tr[u]

[ Label edges in the graph according to their role in the search
(see textbook)

< Tree edges, traversed to an undiscovered vertex

<> traversed to a descendent vertex on the current
spanning tree

<-Back edges, traversed to an ancestor vertex on the current
spanning tree

< Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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DFS Note: Stackis Last-In First-Out (LIFO)

Found
Not Handled
Stack
<node,# edges>
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DFS Found
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DFS Found

Cross Edge to handled node: d[h]«d[i] Not Handled
’ S [ 1 Stack

<node,# edges>

=




DFS Found
Not Handled

S [ U Stack
<node,# edges>

N




A4]7

DFS

1/

Found
Not Handled
Stack
<node,# edges>

w o

w O O
=N

9/




DES Found
Not Handled

S [ U Stack
<node,# edges>

‘,
W

w O O
=N

417 |h®

9/




DFS

1/

Found
Not Handled
Stack
<node,# edges>

| L9r10




DFS

1/

11/

Found
Not Handled
Stack

<node,# edges>

9/10

Voo |4

a,l
S,1




DFS Found
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DFS Found
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DFS Found
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Classification of Edges in DFS

Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an ancestor v in
a depth-first tree.

Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

1/27

[2/20] \-
[3/19] x
.
]

[17/1]
f 8




Classification of Edges in DFS

1. Tree edges: Edge (u, v) isatree edge if v was black when (u, v) traversed.
2. Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4, Cross edges (u,v) is a cross edge if vwas gray when (u, v) traversed and
d[v] < d[u].

Classifying edges can help to identify

properties of the graph, e.g., a graph is

acyclic iff DFS yields no back edges.




DFS on Undirected Graphs

» In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

» Why?



DFS on Undirected Graphs

Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

(u,v) is aforward edge or a cross edge when v
Is already handled (grey) when accessed from
u.

This means that all vertices reachable from v
have been explored.

Since we are currently handling u, u must be red.
Clearly v is reachable from u.

Since the graph is undirected, u must also be
reachable from v.

Thus u must already have been handled: u must
be grey.

Contradiction!

{
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DFS Application 1: Path Finding

The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

We use a stack to keep track of the current path

If the destination vertex z is encountered, we return the path as the contents of

the stack  5es pam (0 z stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] = RED
push u onto stack
fu=z
return TRUE
for each v 1 Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE
colour[u]~ GRAY
pop u from stack
return FALSE




DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.

> |If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colour[u] = RED
for each v 1 Adj[u] //explore edge (u,V)
If color[v] = RED //back edge
return true
else if color[v] = BLACK
If DFS-Cycle(v)
return true
colour[u] = GRAY
return false




Why must DFS on a graph with a cycle
generate a back edge?

Suppose that vertex s is in a connected
component S that contains a cycle C. @

Since all vertices in S are reachable from
s, they will all be visited by a DFS from s.

Let v be the first vertex in C reached by a
DFS from s.

There are two vertices u and w adjacent
to v on the cycle C.

wlog, suppose u is explored first.

Since w is reachable from u, w will
eventually be discovered.

When exploring w’'s adjacency list, the
back-edge (w, v) will be discovered.



DFS Application 3. Topological Sorting
(e.g., putting tasks In linear order)

Note: The textbook also describes a breadth-
first TopologicalSort algorithm (Section 13.4.3)



DAGs and Topological Ordering

» A directed acyclic graph (DAG) is a
digraph that has no directed cycles

» A topological ordering of a digraph e @
IS a numbering

Vi, e Vp e

of the vertices such that for every e

edge (v;, v;), we have i <]

> Example: in a task scheduling e DAG G
digraph, a topological ordering is a
task sequence that satisfies the v, Vg
precedence constraints

Theorem V2

A digraph admits a topological
ordering if and only if it is a DAG

Topological
ordering of G



Topological (Linear) Order

underwear socks
9 ®
pantsg & shoes
K
underWAeb W socks
pants " underwear
socks ) pants
shoes shoes



Topological (Linear) Order

underwear socks
L ) ®

Invalid
pantsg .gshoes Ve




Algorithm for Topological Sorting

» Note: This algorithm is different than the one
In Goodrich-Tamassia

Method TopologicalSort(G)

H € G // Temporary copy of G

n € G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v € n
n€&n-1
Remove v from H //as well as edges involving v




Linear Order

d Pre-Condition:
/\ A Directed Acyclic Graph
‘ h (DAG)

4

%| Post-Condition:
!

A i Find one valid linear order

J

@ o O T

‘ k  Algorithm:
/ -Find a terminal node (sink):
*Put it last in sequence. ;l‘ O(IVI)
Delete from graph & repea
T
Running time: g i = O(M )
i=1

1 Can we do better?



Linear Order

Alg: DFS Found

Not Handled
Stack

O MKQQ —h



Linear Order
Alg: DFS

/a\
b ‘ h

o]
ZI} ) %J

1 4 k

<

Found
Not Handled
Stack

o D =

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:



Linear Order
Alg: DFS
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Linear Order
Alg: DFS
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Linear Order:

g,l.f

Found
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Linear Order
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Linear Order
Alg: DFS
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Linear Order
Alg: DFS
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Linear Order
Alg: DFS Found
Not Handled

/\ Stack

Linear Order: k,d,@,g,',f



Linear Order
Alg: DFS Found
Not Handled

/\ Stack

Linear Order: j,k,d,e,g,l,f



Linear Order
Alg: DFS Found
Not Handled

/\ Stack

Linear Order: i,j,k,d,e,g,l,f



Linear Order
Alg: DFS Found
Not Handled

/\ Stack

—h
\n/
(@p)

Linear Order: i,j,k,d,e,g,l,f



Linear Order

_ Found
3 Alg: DFS Not Handled

/\ Stack
b “ eh
C 1 4 II
e 1 ‘ 1k

<
f I h

Linear Order: C,i,j,k,d,e,g,l,f



Linear Order

_ Found
a Alg: DFS Not Handled
/\ Stack
Y Neh
1 4 II

1 4
!

@ QO O O

g
«

K
>/

f \I

Linear Order: b,c,i,j,k,d,e,g,l,f




Linear Order

_ Found
3 Alg: DFS Not Handled

/\ Stack
b Y eh
C 1 ) Ii
e 1 ‘ 1k

<

g
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f . | .

Linear Order: b,c,i,j,k,d,e,g,l,f



Linear Order
Alg: DFS Found
Not Handled

/ \ Stack

4

>\

Linear Order: h,b,C,i,j,k,d,E,Q,Lf

d



Linear Order

Alg: DFS
./a\
IR
e1 <k

Found
Not Handled
Stack

Linear order:  @,N,b,C,1,],k,d,e,g,l,f Done!



DFS Algorithm for Topologial Sort

» Makes sense. But how do we prove that it works?



Linear Order

Found
Proof: Consider each edge Not Handled
«Case 1: u goes on stack first before v. Stack
*Because of edge,
v goes on before u comes off
v comes off before u comes off
v goes after u in order. ©
Y
!

Ue——o V



Linear Order

Found
Proof: Consider each edge Not Handled
«Case 1: u goes on stack first before v. Stack
«Case 2: v goes on stack first before u.
v comes off before u goes on.
v goes after u in order. ©
v

Ue——o V



Linear Order Found

Proof: Consider each edge Not Handled
«Case 1: u goes on stack first before v. Stack
«Case 2: v goes on stack first before u.
v comes off before u goes on.
Case 3: v goes on stack first before u.
u goes on before v comes off.

Panic: u goes after v in order. ®

«Cycle means linear order ( u>
is impossible © V.
The nodes In the stack form a path starting°at S.

Ue——eo V

V.. U...



Linear Order

Alg: DFS Found

Not Handled
Stack
h

f
Ij
K
Analysis: ®(V+E)

Linear Order: a,h,b,c,i,j,k,d,e,g,l,f Done!



DFS Application 3. Topological Sort

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order
for each vertex ul V[G]
color[u] = BLACK //initialize vertex
for each vertex ul V[G]
If color[u] = BLACK //as yet unexplored
Topological-Sort-Visit(u) \

[



DFS Application 3. Topological Sort

Topological-Sort-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: u and all vertices reachable from u
nave been pushed onto stack in reverse linear order

colourfu] = RED

for each v 1 Adj[u] //explore edge (u,v)

If color[v] = BLACK
Topological-Sort-Visit(v)
push u onto stack
colour[u] = GRAY
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